

Annelies De Decker¹, I. Sioen¹, S. Verbeken², N. Michels¹, S. De Henauw¹

¹Department of Public Health, Ghent University, Gent, Belgium

²Department of Developmental, Personality and Social Psychology, Ghent University, Gent, Belgium Annelies.DeDecker@UGent.be

Reward sensitivity is a determinant of higher fat intake and BMI in Flemish children

Background

- Childhood overweight and obesity = currently major health concerns.
- Research on risk factors of overweight in children is crucial to develop new effective interventions.
- Individual differences in sensitivity to rewards (RS) of adolescents and adults, measured with the Drive subscale of the Behavioral Inhibition System/Behavioral Activation System (BIS/BAS) scale, were positively related to BMI.
- In adults, RS was associated with fast-food consumption.

Problems

- Link between RS and food consumption frequency has never been investigated in primary school-children.
- Link between RS and body-fat percentage (BFP) has never been examined before.

Hypotheses

- Positive association between RS and unhealthy food consumption (high fat and/or sugar).
- Positive association between RS and BMI/BFP.

Methodology

- Forces study: 430 Flemish children, age=5.5 to 11.5 years, 49% boys.
- Population sample of healthy children, recruited in schools.
- Parents completed 43 item food frequency questionnaire and BIS/BAS scale. Drive-subscale was used in the current study.
- Children's weight, height were measured and BMI z-scores based on Flemish growth curves were calculated; BFP was measured with a BOD POD®.
- Statistics:
 - Principal component analyses to reduce items and define connected components, based on msa-values (>0.65), scree-plot and factor interpretability.
 - Multiple linear regression analyses with RS (Drive-subscale) as predictor, controlled for gender and age, and food components and body composition measurements as outcome.

Results

PCA revealed three food consumption components (non-normally distributed)

Fat =Foods high in fat

- Fried potatoes, potato croquettes
- Pizza as main dish • Chips, tortillas, popcorn,...
- Sausage roll, cheese roll, pizza-snack,...
- Ice cream
- Mayonnaise, mayonnaise based products
- Ketchup
- Chocolate, candy bars Sweet and soft drinks (cola,
- limonade, Aquarius, ...)
- Light en zero soft drinks
- Candy Fresh fruit with added sugar

Sweet =Foods high in sweetness

- Cheese (not spreadable cheeses)
- Unsweetened milk
- Fresh fruit without added
- sugar Dark bread
- Guidelines =Foods according to guidelines

Spearmans' Rho

0.370 (p<0.001)

-0.290 (p<0.001)

-**0.240** (p<0.001)

Correlation between food

consumption components

Fat -Sweet

Fat-Guidelines

Sweet-Guidelines

Multiple linear regression with RS, age and gender as predictors and food consumption components/BMI/body-fat percentage as outcome (Standardized regression coefficient B represented for each predictor, p-value in brackets)

	Outcome	Adjusted R ²	β Reward Sensitiv.	βage	β gender
		0.045	0.444 (0.000)	0.406 (0.007)	0.040./0.604\
-	High fat	0.015	0.111 (0.022)	0.106 (0.027)	0.019 (0.694)
	High sugar	0.002	-0.018 (0.708)	0.089 (0.065)	-0.018 (0.710)
	Tue ditie e e l	0.002	0.024 (0.020)	0.000 (0.214)	0.014 (0.772)
-	Traditional	-0.003	-0.024 (0.626)	-0.060 (0.214)	-0.014 (0.773)
	BMI z-score	0.022	0.137 (0.004)	-0.072 (0.126)	0.067 (0.158)
	DED	0 1 4 5	0.001 (0.007)	0 220 / (0 001)	0 100 / (0 001)
	BFP	0.145	0.081 (0.067)	0.339 (<0.001)	0.186 (<0.001)

Conclusion

The current study identifies higher sensitivity to rewards (RS) as a risk factor for higher weekly consumption frequency of high fat foods, but not of sweet foods. The items included in the 'fat' food consumption component can be called **palatable foods**, highly attractive and rewarding when consumed. Further, higher RS is also a risk-factor for higher BMI in children. The relationship between RS and BFP is nearly significant. However, the **explained variance** of RS in predicting high fat foods consumption and BMI is small. A possible explanation is that primary school children's food consumption is highly controlled by the parents and not by a child characteristic.